翻訳と辞書
Words near each other
・ Spectrum Equity
・ Spectrum FM
・ Spectrum Foundation
・ Spectrum Foundation Awards
・ Spectrum Games
・ Spectrum Health
・ Spectrum HoloByte
・ Spectrum Industries
・ Spectrum London
・ Spectrum mall
・ Spectrum Mall (Chennai)
・ Spectrum management
・ Spectrum Management and Telecommunications
・ Spectrum of a C*-algebra
・ Spectrum of a matrix
Spectrum of a ring
・ Spectrum of a sentence
・ Spectrum of a theory
・ Spectrum of Death
・ Spectrum of theistic probability
・ Spectrum Patrol Car
・ Spectrum Pharmaceuticals
・ Spectrum pooling
・ Spectrum Press
・ Spectrum problem
・ Spectrum Pursuit Vehicle
・ Spectrum Radio
・ Spectrum Range
・ Spectrum reallocation
・ Spectrum S-33 Independence


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spectrum of a ring : ウィキペディア英語版
Spectrum of a ring

In abstract algebra and algebraic geometry, the spectrum of a commutative ring ''R'', denoted by Spec(''R''), is the set of all prime ideals of ''R''. It is commonly augmented with the Zariski topology and with a structure sheaf, turning it into a locally ringed space.
==Zariski topology==

For any ideal ''I'' of ''R'', define V_I to be the set of prime ideals containing ''I''. We can put a topology on Spec(''R'') by defining the collection of closed sets to be
:\.
This topology is called the Zariski topology.
A basis for the Zariski topology can be constructed as follows. For ''f''∈''R'', define ''D''''f'' to be the set of prime ideals of ''R'' not containing ''f''. Then each ''D''''f'' is an open subset of Spec(''R''), and \ is a basis for the Zariski topology.
Spec(''R'') is a compact space, but almost never Hausdorff: in fact, the maximal ideals in ''R'' are precisely the closed points in this topology. However, Spec(''R'') is always a Kolmogorov space. It is also a spectral space.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spectrum of a ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.